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Several related models are studied in a common framework. We first reconsider 
the model of Matheron and de Marsilly for (anomalous) tracer dispersion in a 
stratified porous medium. In each horizontal layer the flow velocity is constant, 
parallel to the layer, and depends randomly on the vertical coordinate z. 
This model is mapped onto a d =  1 localization problem in a random potential 
and, equivalently, onto a d =  1 polymer. At large t the averaged distribution 
of horizontal displacements x takes the scaling form [P(x, t , z = O ) ] =  
at-5/aQ(bxt-~/4), where Q(y) is independent of the details of the model. Q(y), 
a, and b are obtained exactly for a large class of models. From the Lifschitz tails 
of the localization problem we find in the region x,> t 3/4, i.e., y ~ o% that 
Q(y) ~ly]  exp(-Clyl4/3) �9 We also obtain exactly in d =  1 the scaling functions 
for the local and total average magnetization of spins diffusing in a random 
magnetic field, by mapping onto a polymer problem, as well as the average local 
concentration for diffusion in the presence of random sources and sinks. These 
mappings are then used to study higher-dimensional extensions of these models. 

KEY WORDS: Diffusion in random flows; random potentials; spin 
depolarization; self-avoiding chain. 

1. I N T R O D U C T I O N  

I n  th i s  p a p e r  we s t u d y  t h r e e  m o d e l s  of  d i s o r d e r e d  s y s t e m s  w h e r e  d i f fus ion  

p lays  a n  i m p o r t a n t  ro le :  a n o m a l o u s  d i s p e r s i o n  in  l a y e r e d  r a n d o m  flows, 

d i f fus ion  w i t h  r a n d o m  s o u r c e s  a n d  s inks ,  a n d  sp in  d e p o l a r i z a t i o n  in  

r a n d o m  fields. As  we f ind,  al l  of  t he se  m o d e l s  h a v e  s o m e  r e l a t i o n  to  e a c h  

o t h e r  a n d  to  t w o  w e l l - s t u d i e d  p r o b l e m s :  t h e  e l e c t r o n  in  a r a n d o m  p o t e n t i a l  
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and, equivalently, the Edwards self-repulsive chain. The precise connection 
between these last two models and its consequences in d =  1 was described 
by Thouless in his beautiful work on the analytic properties of the averaged 
Green function of an electron in a random potential. Our aim here is to use 
the work of Thouless to obtain new exact results for these related models, 
which are quite interesting physically. That all these problems are related 
seems quite natural since mathematically they all amount to obtaining 
some information on the distribution of the random variable ~ V(z(~)) dt, 
where z( ,)  is a Wiener process (Brownian walk) and V(z) an arbitrary 
(random) function. This question, of course, has been much studied in 
probability theory and some of the references are reviewed in the Conclu- 
sion. However, despite recent renewed interest in the physics literature in 
the models studied here, these connections between the various models, 
which we find quite useful, have not been fully exploited. We thus believe 
that the detailed presentation of Section 2 might be useful, even if some of 
these connections are quite natural and, by now, probably well known to 
probabilists. Let us now introduce the models for which new results are 
obtained. 

1.1. D i f f u s i o n  in a R a n d o m  Layered F l o w  

A large number of recent theoretical works (1 8) have addressed the 
problem of classical diffusion of independent particles in a random environ- 
ment with spatial quenched disorder. Apart from the d--1  case (and 
marginally d = 2 )  (1 4) or from media with "long-tailed" distributions of 
local disorder, (5) the most interesting anomalous diffusion behaviors have 
been shown to occur when the disorder of the medium has long-range 
correlations. (6-s~ Such correlations could happen for incompressible flows 
in porous materials if the flow lines are correlated over large distances. 
A particularly simple, yet interesting model of divergenceless flow realizing 
this idea was introduced (9~ a long time ago in hydrology to study the 
permeability of stratified porous media. More recently, Matheron and 
de Marsilly (MdM) showed (1~ that this model can lead to anomalous 
diffusion (we thus refer to it as the MdM model). They considered the 
motion of a test particle in a 2D layered velocity flow described by the 
following Langevin equation: 

dx dz 
d t  = V(z)+~lh(t),  d t =  rl(t) (1.1) 

where x and z are, respectively, the horizontal and vertical coordinates of 
the particle at time t. The velocity flow is horizontal and is only a 
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Fig. 1. 
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Discretized version of the 2D random layered velocity flow. The velocity is along x 
and is a random function of the vertical coordinate z. 

(random) function of the elevation z (see Fig. 1). t/h and r/ are two inde- 
pendent thermal white noise processes, i.e., with centered Gaussian 
distributions such that (t/(t) r/(t ')) = 2 D S ( t - t ' )  and (t/h(t) t/h(t')) = 
2Dh 5(t-- t ' ) .  We denote thermal averages by ( - . - )  and configurational 
averages over the disorder of the medium [i.e., over all possible V(z)] by 
[-..]. Since the vertical motion is simply pure Brownian diffusion, (1.1) can 
be integrated into [with x (0 )=  z (0 )=  0]: 

x ( / ) =  f~ V(z(u))du+ f~ qh(u)du, z(u)=  ff  q(v)dv (1.2) 

The horizontal displacement x(t) can thus be expressed as some integral 
along the path of the pure Wiener process z(u) (0 <<, u <~ t). In the absence 
of bias [V(z)] =0,  the second moment [ ( x ( t ) 2 ) ]  is readily evaluated ~176 
a s  

l u '  

+ 2Dht (1.3) 

We denote by Po(z, u) = (41rDu)-1/2 exp(-zZ/4Du) the free diffusion kernel 
(u > 0). If [ V(z) V(z') ] = 05 (z' - z), ( 1.3 ) further simplifies and 

f~ ff' 2a 4a [ ( x ( t ) 2 ~ ] =  du' du [4~D(u, u)]l/2+2Dht-3OrD)l/2t3/2+2Dht 

(1.4) 

{we will find that more generally (see Appendix) the leading term is the 
same with o- replaced by ~ = ~ dz [ V(0) V(z)] }. Thus, as M dM  concluded, 
horizontal diffusion is anomalous, x ~ t  3/4. Note that the horizontal 
thermal noise t/h produces only a trivial additive contribution, which 
furthermore can be neglected at large time (t>DD]a-2). We thus set 
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t /h=0 in the rest of the paper (Dh=0) .  We also set IV(z)] =0 ,  since 
adding to V(z) a horizontal bias Vo amounts only to a trivial uniform 
translation 

x(t)= Vot + X(t)t o=o 

If one thinks of a stratified porous medium where each layer has a slightly 
different permeability as a possible experimental system, the average 
velocity V o will be nonzero, then leading to anomalous dispersion. 

Let us recall the physical mechanism responsible for anomalous diffu- 
sion in this model, which was pointed out in ref. 11. We will also use in this 
paper a discretized version of (1.1) (with ~/h = 0) such that, by analogy with 
(1.2), the horizontal position of a given particle at integer time t reads 

x( t )  = V(z(t ' ))  = ~ V(k) n(k, t) (1.5) 
t ' - - I  k =  oo 

where the vertical position z(t)  is now a symmetric random walk on a 
Z-lattice for which n(k, t) is the total number of visits at site k between 0 
and t. Since x( t )  is a sum of t random variables of zero mean, one could 
conclude that x ~ ?/2. This is wrong, however, due to multiple visits to the 
same layer. Indeed, between 0 and t a one-dimensional walker visits only 
typically ~ t  1/2 distinct sites, each being visited ~ t  ~/2 times. (5) can thus be 
rewritten as 

x ( t ) -  t 1/2 E V(k) 
k <~ t 1/2 

The sum of ~ t ~/2 centered random variables V(k) being of order ~ t ~/4, one 
has typically x( t )  ~ t 3/4. The spatial long-range correlations of the medium 
thus generate temporal long-range correlations in successive elementary 
horizontal displacements of the walker, resulting in anomalous diffusion. 
This type of analysis, when applied to more general correlated environ- 
ments, (7'~2~ gives useful "Flory" (or "dimensional") approximations for the 
diffusion exponent. It can be shown (12) that these approximations are in 
fact exact whenever the flow is divergenceless (#~ V~, = 0). This is also the 
case for the MdM model [since Vz = 0, Vx = V(z)], although here it takes 
a particuliarly transparent form due to the partial decoupling between the 
motion along x and z. This makes this model a particularly interesting way 
to approach more complicated situations. 

Because of the apparent simplicity of this model one could hope to go 
beyond the simple calculation of the second moment (1.4) and obtain the 
behavior of a packet P(x,  z, t) of diffusing particles initially concentrated at 
x = z = 0  (Green function). This, however, is quite a formidable task. We 
are able, however, to compute the average front [P(x,  z, t)]  for the 
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continuum model (1.1), but only for z = 0  (e.g., the return probability 
within a layer). This is equivalent to obtaining all moments [ (x2n(t))z_o]. 
It is obtained by noticing that there is an exact relation between the Green 
functions of the MdM model (1.1) and of the localization problem in the 
1D random potential V(z), with Hamiltonian H x = - D V Z + 2 V ( z ) .  
Formally, this relation reads 

dx dte S t e - ~ X P ( x , z , t ) = ( O I s - - ~ l z  ) (1.6) 

(its correct meaning is given in Section 2). It is valid for any configuration 
of V(z) and can be averaged over disorder. The case of a 1D Gaussian 
white noise potential [as in (1.4)1 is one of the rare example where some 
exact results are available. Thus, using the well-known results (13 15) for the 
averaged Green function of the localization problem for coinciding points 
z =  0 (no closed analytical expression exists for z r  we obtain for the 
MdM model (after a few transformations) 

[P(x, z = 0 ,  t ) ]  = at-5/4Q(bxt-3/4) (1.7) 

where a and b are constants. Two exact and complementary expressions 
are obtained for the scaling function Q(y) using analytical properties of 
Airy functions. The result (1.7) is already very interesting. First, the impor- 
tant point is that its validity is not restricted to the Gaussian white noise 
potential case. Indeed, from (1.6) the limit t , x ~  oo of this diffusion 
problem corresponds to the weak-disorder limit (2 ~ 0) near the band edge 
(s ~ 0) of the localization problem, which is known to be universal in the 
scaling region. Thus, Q(y) is universal. Furthermore, we find that the 
constants a and b do not depend on microscopic details and can thus be 
computed exactly, using expressions like (1.4), for all the models within the 
universality class of the Gaussian distribution (e.g., potential with short- 
range correlations, etc.). This should allow for easy comparison with 
numerical simulations. We can also analyze the asymptotic behavior of 
Q(y) and we find [P(x,z=O, t)]~exp[-C(x/t3/4)4/3]. Lifschitz argu- 
ments indicate this should remain true for z r 0. 

One can also consider the MdM model in dv "vertical" dimensions. 
Although diffusion becomes normal, x ~ t 1/2, in dv > 2, it is easy to see that 
higher-order moments do have anomalous behavior in higher dimensions. 
The question of the diffusion front is intriguing. Flory-Lifschitz arguments 
indicate that it becomes Gaussian for d~ > 2 with, however, nontrivial tails. 
Finally, although the averaged diffusion front [P(x, z, t)] is a physically 
interesting quantity, it is different from the typical packet in a given 
environment. This phenomenon was discussed in ref. 17. 
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1.2. Decay of  the Magnet i za t ion  of Dif fusing Spins 

The transverse magnetization M = Mx~ + iMx2 of a magnetic moment 
in a magnetic field H applied along a third orthogonal direction x3 rotates 
with a frequency co0=TH (Larmor precession ). If the field is slightly 
inhomogeneous, different magnetic moments will rotate with different 
frequencies COo+CO(z ) and the total transverse magnetization will thus 
decay. If in addition the moments diffuse in d dimensions (which coor- 
dinate we denote by z), the macroscopic local transverse magnetization 
satisfies the following equation: 

OM(z, t) _ DV~M(z, t) + iCO(z) M(z, t) (1.8) 
Ot 

[the uniform factor exp(iCOot) has been eliminated by transforming to the 
rotating frame]. In a recent work with Mitra, (18) we have considered the 
case where CO(z) is a random function, motivated by the fact that static 
quenched random fields do exist in some NMR experimental systems, such 
as porous rocks. Using a mapping of (1.8) onto the well-studied problem 
of the self-avoiding walk (polymer), we have obtained quite general 
expressions for the asymptotic decay of the magnetization. 

Here we concentrate mostly on d =  1, and using the exact results of 
Thouless (15) for the d =  1 polymer, we obtain the exact form of the decay 
of the magnetization. For the total magnetization it reads at long times 

f dz [M(z, t)]  ~ exp{ -- 1.74...~4/3(4D) 1/3t} (1.9) 

As we discuss here, this formula has a wide range of validity and should 
also apply to discrete models, with appropriate definitions of ~ and D 
which are indicated in Section 4. Note that a qualitatively correct analysis 
of the d =  1 case was given by the authors of ref. 19, who did not seem to 
be aware of the mapping onto a polymer: the exact result (1.9) should also 
apply to their discrete model. 

The spin depolarization problem is also directly related to the MdM 
model: the total dephasing accumulated by a single diffusing magnetic 
moment is q)(t)= iS; co(z(T))dr and is thus, apart from the factor i, identi- 
cal to the horizontal displacement x(t) in the MdM model. The tracers in 
the MdM model which did not diffuse much in the x direction correspond 
to the diffusing moments which did not accumulate too much phase and 
thus dominate the decay of the magnetization: as we will see, both further 
correspond to stretched, self-avoiding Brownian trajectories in the z 
coordinate! 
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1.3. D i f fus ion  in the  Presence of R a n d o m  Sources and Sinks 

This model has received some renewed attention recently/2~ In this 
model independent particles in concentration P(z, t) diffuse and can be 
created or annihilated locally with a rate V(z) (negative or positive, 
respectively): 

~?P(z, .t) DVZP(z ' t ) -  V(z) P(z, t) (1.10) 
Ot 

Note that P(z, t) is also the partition function of an ideal chain in a 
random potential V(z). Recently, (1.10) was studied for Gaussian continuum 
randomness in d =  1, and the average local concentration [P(0, t)]  was 
obtained. Here we correct some errors in the result of a recent letter. (2~ 
Since [P(0, t)] is obviously related to the density of states p(E) of the 
Hamiltonian H = - D V  2 + V through 

f 
+ o o  

[P(O, t)]  = dEe-Etp(E) 
- - o o  

and that p(E) has been known for a long time, (13'~5~ it was not necessary 
to rederive it in Ref. 20. Here we obtain it directly and very simply. As we 
will see there is also a connection between the long-time behavior is this 
problem and the region of the diffusion front of the MdM model which 
corresponds to stretched walks along x. 

This paper is organized as follows. In Section 2 we discuss in great 
detail the connections between all these models, which are then used exten- 
sively in the following sections. In Section 3 we concentrate on the model 
of Matheron and de Marsilly in its original form (one transverse dimen- 
sion). We obtain several expressions for the average diffusion front, discuss 
its universality, and obtain the moments  [ ( x 2 n ) ] .  In Section 4 we obtain 
new results for the spin depolarization problem in d =  1 using the connec- 
tion with the 1D polymer, discuss universality, and review some results 
that we obtained recently in ref. 18 in higher dimensions. In Section 5 we 
compute the average local concentration in the problem of diffusion in the 
presence of sources and sinks, and discuss its universality and its relation 
to the density of states of the localization problem. In Section 6 we use 
Flory-Lifschitz arguments to relate various tails of the scaling functions of 
these models in d =  1 and in higher dimensions. In particular we obtain the 
exact expression of the front for the MdM model on a cylinder. Section 7 
is the conclusion, where some of the more recent literature is reviewed. 
Finally a diagrammatic calculation of the moments  [ ( x 2 n ) ]  is performed 
in the Appendix. 
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2. M A P P I N G  O N T O  A R A N D O M  POTENTIAL OR A P O L Y M E R  
P R O B L E M  

In this section we study in detail the exact relations between the M d M  
model, the localization in a random potential, the polymer problem, the 
spin depolarization problem, and the problem of diffusion in the presence 
of sources and sinks. These mapping are very general and valid in any 
dimension and will be applied to particular cases in the following sections. 
An an example of application we solve the case of the Cauchy distribution 
for V(z). 

2.1. Relat ion be tween  the M d M  Model ,  the Localization 
in a Random Potential ,  and the Dif fusion 
w i th  Sources and Sinks 

Let us start with the continuum version (1) of the Matheron and de 
Marsilly model (with r/h =0) .  For  simplicity we discuss here the case of 
d~ = 1 ,,vertical" dimension (coordinate z), but extension to arbitrary d~ is 
straightforward. For  a given configuration of the flow field V(z) we define 
P(x, z, t) to be the probability of the presence at (x, z ) a t  time t for a 
particle initially at the origin, i.e., satisfying P(x, z, t = O)= 6(x)6(z) .  We 
will also use its Laplace transform P(x, z, s) = S~ ~ P(x, z, t)e -~t dr. There 
are several methods to relate P(x, z, s) to the Green function of the 
Schr6dinger equation in the potential V(z). 

The first method makes use of the Feynman-Kac path integral (22'23) in 
order to compute the generating function of the moments (xn( t ) )x :  

P(2, z, t ) =  dx e-XXp(x, z, t ) =  exp - 2  du V(z(u)) (2.1) 
o o  z 

where ( . .  ")z denotes the unnormalized thermal average over all Brownian 
paths z(u), O<<,u<<, t, with z ( 0 ) = 0  and z ( t )=z .  In fact our problem is 
precisely the famous problem solved by Kac of finding the probability 
distribution of the variable x(t) = ~o V(z(u)) du. In ref. 22, Kac solved it for 
V positive, or at least bounded from below. Here we are interested in cases 
where V can be of arbitrary sign and arbitrarily large (although with 
vanishing probability), but this will be handled below using some 
analytical continuations. One can rewrite the generating function (2.1) as 
a path integral over Brownian paths: 
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which, as is well known, (22'23) is also equal to the Green function 

P(2, z, t )=  (z lexp(-H~t) lO } =- G~(z, t) (2.3) 

of the Hamiltonian Hx= - D  ~2/~Z2-~ •V(z) associated with the action in 
(2.2). By definition, G;.(z, t) satisfies the equation 8G~(z, t)/Ot = -H;G~.(z, t) 
with initial condition G~(z=0, t )=S(z),  and is thus equal to the local 
concentration after time t of a packet initially at z = 0 diffusing in a 
medium with sources and sinks of strength 2V(z). It is related through (2.3) 
to the generating function of the horizontal displacement of the MdM 
model. Note that in cases of interest here, the spectrum of H may extend 
to the region of arbitrarily large negative energies. Thus, for t and z fixed, 
(2.3) holds only if both expressions are finite but for most of the applica- 
tions here this is the case (in particular for the Gaussian white noise), 
because P(x, z, t) decays faster than exponentially when x --, -oo  (z and t 
fixed). 

From (2.3) one can obtain two useful relations between the MdM 
model and the localization problem. First one can average over disorder 
[or equivalently, for a given configuration, sum over initial positions 
z ( t = 0 )  with z=z( t ) -z(O)] .  Using a formal expansion in terms of the 
eigenstates 7 ~. and eigenvalues E.  of H;., one has 

[P(2, z, t)] = g~(O) ~*(z) e x p ( - E . t )  = dEpx(z, E) e x p ( - E t )  
o o  

(2.4) 

with 

px(z, E) = ~ 7tn(O) 7J*(z) 6 ( E -  En)= ___~-' Im[G;~(z, E+ ie) ] 
n 

and where Gx(z, E) is the Green function of the localization problem (2.5). 
In particular, p;.(z = O, E) = p(E) is the density of states. 

-The second relation is obtained by taking the Laplace transform of 
(2.3) without averaging: 

f + ~ 1 7 6  1 dx dte-~te ~ x P ( x , z , t ) = ( O t s ~ - ~ l z } - - G ; . ( z , E = - s  ) 
- - o o  . 

(2.5) 

This relation is true strictly speaking only for Re(s)> Max , ( -En) ,  which 
is infinite if V(z) is, for instance, a Gaussian white noise. In that case the 
Green function G(z, E) defined by (2.5), which can be continued in the 
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entire complex plan in the standard way, has poles on the entire real axis 
(for a given configuration) and (2.5) is only formal for s real. Once 
averaged over disorder, G(z, E) has an imaginary part and a cut along the 
entire real axis [see the definition of p~(z, E) above]. It is possible, 
however, to deduce a useful relation from (2.5)~ for instance, by analytic 
continuation in 2. After the average it reads 

dx dt e-S'e-i;'x[P(x, z, t)] = - [Gi~(z, - s ) ]  
oO 

(2.6) 

where both sides are real (in the absence of bias [P(x, z, t)]  is an even 
function of x) and well defined (for s > 0) in all the cases that we study. As 
we discuss in the next subsection, (2.6) is the partition function of a 
polymer. 

Since we will use extensively formulas (2.4) and (2.6) in the following, 
let us check them in the case 2 = 0. One then obtains as expected that the 
normalization P(2 = O, z, t) =- ~ dx P(x, z, t) of the probability distribution 
inside a fixed layer z is equal to the free propagator along z: 

Po(z, t) = (47rDt) 1/2 exp[--z2/(4Dt)]  

Indeed, in (2.5) the Hamiltonian H 0 = - D V  2 then corresponds to the free 
diffusion along z. For  a free particle one has that 

po(z,E)=(2rc) l(ED)-l/2cos[lzl(E/D)l/2],  E > O  

and 

po(z, E) = O, E < 0 

Then Eq. (2.4) correctly leads to P(2 = 0, z, t ) =  Po(z, t) and Eq. (2.5) leads 
to 

f dx P(x, z, s) = Po(z, s) = (4sD) l/2 e x p [ - I z t  (s/D) 1/2] 

- G o ( z , - s )  for s > 0  

One can also recover (2.5) without using the Feynman-Kac formula 
through an explicit expansion of the moments ( x ' ( t ) )  in powers of 2V. 
This is done in the Appendix. Note that this expansion is equivalent, order 
by order, to the weak-disorder expansion in localization and gives a correct 
meaning to the analytic continuation in 2. 
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2.2. Relat ion w i th  a Polymer  Problem and w i th  the 
Depolar izat ion of Di f fusing Spins 

It is well known since the work of Edwards ~24/ and Thouless ~ that 
the averaged Green function of an electron in a random potential is related 
to the correlation function of a polymer by an analytic continuation. This 
continuation is precisely 2 --+ i2, which transforms (2.5) into (2.6). It is also 
interesting to map directly the MdM model on a polymer problem. Let us 
consider first the discrete model (1.5) in the case where the V(k), k integer, 
are centered Gaussian independent random variables of variance or. The 
horizontal displacement is given by x(t) = Zk V(k) n(k, t), where n(k, t) is 
the number of visit at site k from between 0 and t. The Fourier transform 
of the average diffusion front can then be related to the partition function 
of a polymer. Averaging first over disorder for a fixed path z(u), 

f dx exp( - i2x) [P(x ,  z, t)] = [(exp(-i2x(t)))z] 

(exp( 
2 k  

(2.7) 

where ( ' " ) z  means that the endpoints are kept fixed, z(0)=0,  z(t)=z 
(and satisfies 5 dz (1 )z  = 1). The last term in (2.7) is precisely the partition 
function for a chain of t segments with repulsive self-interaction and fixed 
ends (e.g., its correlation function). The energy associated to n visits of the 
same site is positive and proportional to n 2 (this corresponds to the 
so-called Joyce model). For a continuum Gaussian potential, (2.7) has the 
same form (with Z t  replaced by 5~' dt), the partition function being 
replaced by 

lexp ( -  )o22 f] f] du dv a(z(u)- z(v))) ) z (2.8) 

Note that the Laplace transform of (2.7) with respect to time, equal to 
-[Gi~(z, - s ) ]  from (2.6), is equal to the same partition function in the 
grand canonical ensemble (s being the chemical potential). Finally, also 
note that the average concentration in the presence of sources and sinks 
[G;.(z, t)] has an expression analogous to (2.7) with 2 2 ~  _22 and can 
thus be interpreted as a polymer with attractive self-interaction. 

The relation with the spin depolarization problem, which was also 
presented in ref. 18, is the following. The averaged transverse magnetization 
for n steps of a spin performing a discrete random walk in a Gaussian 
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random magnetic field inducing random frequencies cok=2V(k ) (see 
Section 1) is also 

M ( z , t ) = I ( e x p ( i 2 ~ V ( k , t ) ) ) z ]  

where the sum in the exponent of the r.h.s, is the total phase accumulated 
by the spin after n steps {note that 4 2 Zk n(k, t) 2 would be replaced by 
Zk F[2n(k, t)] for a more general distribution P(co) of random frequencies 
such that ~ do P(co) exp(inoJ) = e x p [ - F ( n ) ]  }. The total magnetization 
M(t) = S dz M(z, t) is thus equal to the unrestricted partition function of 
a self-repulsive walk. It decays with time because it is normalized to the 
partition function of a free chain. 

To conclude this subsection, let us give a simple application of the 
mapping onto the polymer. In the case where the V(k) are independent 
random variables with a Cauchy distribution P(V)=m/~ (m2+ V2), it 
allows a very quick calculation of [P(x, z, t)], because the self-interaction 
of the chain vanishes. One has then 

[- (exp( -- i2x(t)) )z] 

k z 

(2.10) 

thus leading to a solution where horizontal and vertical motions are totally 
decoupled: 

m t  
[P(x, z, t)] - n(rn2t 2 + x2 ) Po(z, t) (2.11) 

Now, using (2.6), we have 

G,;~(z, - s )  = - f ds e "te-';mtpo(z, t) = --Po(z, s + 2m) (2.12) 

performing back the analytical continuation 2 ~ i2, one obtains exactly 
Llyod's result (25~ for the average Green function in a random potential with 
a Cauchy distribution. The present method, however, is quite fast. It is 
also obvious that Po(z, t) can be replaced by any translationally invariant 
and Markovian diffusion process on the vertical axis. Since ( x ( t ) )  is 
typically ~mt ,  the Cauchy distribution belongs to a different universality 
class than the Gaussian which is studied in Section 3. 
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2.3. G e n e r a l i z a t i o n s  of  the  M d M  M o d e l  

Here we indicate another and more direct method to derive equations 
like (2.4)-(2.6), which is very suitable to a generalization of the model. One 
starts from the Fokker-Planck equation associated to (1.1): 

~2p ~2p V(z) OP ~P 
D ~z 2 + D h Ox2 - Ox ~t with P(x ,  z, t = O) = ~ (x )  ~(z )  

(2.13) 

Setting Dh = 0, multiplying by e -xx, and integrating over x, one obtains the 
following equation for P(,~, z, t): 

02P )oV(z)P- oP with P(2, z , t=O)=6(z )  (2.14) 
D c3z- ~-  - 0t 

which is formally equivalent to (2.5)-(2.6). The Fourier transform 
P(i2, z, t) satisfies a similar equation with 2 ~ i2. 

From (2.14) one can study the effect of boundary conditions. For 
instance, one can impose periodic boundary conditions along the x axis by 
closing it into a circle of length L. Each flow line closes on itself. The total 
probability on this cylinder PL(x, z, t) at 0 < x < L is then simple equal to 

§  

Pc(x , z , t )=  ~ P(x+nL,  z,t)  
n - -  o o  

where P satisfies (2.13). Thus PL can be expressed as a discrete sum of 
Fourier modes involving the Fourier transform of P: 

PL(X,Z , t )=L -1 ~ exp x P )~=--~- ,z , t  (2.15) 

We have been unable, however, to obtain a simple expression of the similar 
problem with absorbing boundary conditions P(x, z, t ) = 0  at x =  +L/2 
and x = -L/2 .  This is because the usual image method fails since (2.13) is 
not Hermitian. 

Formula (2.14) allows for generalizations. Obviously, if the operator 
D 02P/~322 in (2.13) is replaced by any diffusion operator OzP (discretized 
or continuous, random or homogeneous,...), one sees that (2.14) still holds 
with H;, replaced by H ; =  -O=+2V(z).  In particular, any choice of O= 
such that the density of states or the random Hamiltonian is known 
provides exact results for [P(x, z = 0, t)]. In a related w o r k  (26) w e  study the 
case where Oz is the diffusion operator in a vertical random force field 
(generalizing the Sinai problem). In this paper we will also consider the 
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MdM model with d v "vertical" dimensions and dh "horizontal" dimensions. 
Of particular physical interest are the cases dr = 1, dh = 2 and d~ = 2, dh = 1. 
This model is described by (1.1) where x now a dh-dimensional vector, z a 
d~-dimensional vector, and the random velocity flow V(z) is a horizontal 
dh-dimensional vector, a function only of the dv vertical coordinates. 
Instead of (2.1) one then studies 

P(2, n, z, t ) =  ( e x p ( - 2 n  .x(t)))z (2.16) 

where n is a horizontal dh-dimensional unit vector. Taking Oz to be the free 
diffusion operator in d~ dimensions V 2, one obtains 

1 
P(2, n, z, s ) =  (01 Iz) (2.17) 

s - O = + 2 n .  V 

3. A V E R A G E D  D I F F U S I O N  F R O N T  FOR THE M O D E L  OF 
M A T H E R O N  A N D  DE M A R S I L L Y  

In this section we study the model of Matheron and de Marsilly of 
diffusion in a random layered flow in more detail. We first consider the 
continuum version (1.1) of this model in two dimensions with a velocity 
field V(z) distributed according to a Gaussian white noise process. As 
discussed in Section 2, it can be mapped onto the problem of an electron 
in the random potential 2V(z). Since the work of Thouless, the analytic 
properties of the averaged Green function of the corresponding 
Hamiltonian H~ at coinciding points [G~(z = 0, E)]  are known. This allows 
for an exact determination of [P(x,z=O, t)]. To our knowledge, the 
Green function, at noncoinciding points, does not have a simple expres- 
sion, which seems to forbid an exact determination of [P(x, z, t)] for z ~0.  
Some a'symptotic results can, however, be obtained. We have used two 
complementary methods to obtain the function [P(x, z = 0, t)] by double 
Fourier-Laplace inversion of (2.6). The first method gives an integral 
representation of the scaling function in terms of the density of states of the 
localization problem, while the second method gives a series expansion. 
The asymptotic form of the diffusion front in the region x >> t 3/4 is obtained 
and shown to be related to the Lifschitz tail of the random potential. 
Finally, we study the question of the universality of the average diffusion 
front and show that at large time a large class of discrete models have the 
same scaling function as the continuum model. It is an interesting 
particularity of this model that it is even possible to obtain very simply all 
coefficients for any discrete model. 



Diffusion in Layered Random Flows 931 

3.1. Integral  Equations Satisf ied by [P(x, z = 0 ,  t] and 
Scaling Function Q(y) 

Let us first summarize the known results for the 1D Hamiltonian 
H~=-DO2/Sz2+2V(z) ,  where V(z) is a continuum Gaussian random 
potential with [ V(z)] = 0, [ V(z) V(z')] = a 6 ( z -  z'), and zero higher-order 
connected moments. 

From refs. 14 and 15 the density of states p(E) extends from - o c  to 
+ oe and reads 

f 26t/322/3 

p(E) = ~ ~TzZ(4D)2/3 M2(E(4D) 1/3 ~r-2/32 4/3)) (3.1) 

where M2(z)= Ai2(-z) + Bi2(--z) is the square of the modulus of the Airy 
function. (27) Note that using the large positive-z behavior M2(z)~ nz -~/2, 
one recovers the free density of states p(E)=(2rc)-~(ED)-~/20(E) from 
(3.1) in the limit 2--, 0. From ref. 15 the Green function equals 

a22 62 
[G~(z =0,  E)]  - 2D 0E 2 Ln Ai(E(4D)I/3~r 2/3~-4/3ei~/3) (3.2) 

Note that the imaginary part of (3.2) must be equal to 7zp(E), which can 
be checked using (3.1) and 

2e i~/3 Ai(ze i~/3) = A i ( - z )  + i B i ( - z )  -= M(z)e i~ and O0/Sz = 7z -XM-2 

The result (3.2) was obtained by Thouless as an analytic continuation 
of the result (3.3) for the partition function [Gi~(z = 0, E)]  of the polymer 
problem (2.7), (2.8), itself obtained from the study of the n = 0 component 
4 4 theory in d =  1 (e.g., zero-dimensional quantum mechanics). From (2.6) 
this implies the following equation for the Laplace-Fourier  transform of 
the diffusion front: 

f 
+ o o  

- - o 0  

dx e-iS'x[p(x, O, s)] = - [Gix(z  = 0, - s ) ]  

_ 22a 02 
2D •s 2 Ln Ai(s(4D)l/3(a22) 2/3) (3.3) 

From the symmetry x ~ - x  both sides of the equation are even functions 
of 2. 

Before explicitly inverting the integral equation (3.3) to obtain 
[P(x, z = 0, t)], it is useful to make the scaling apparent by introducing 



932 Le Doussal 

scaling functions of dimensionless quantities. Notice that (3.3) can be 
written as 

f + o~ dx e i;'x[p(x, O, s)] = bsl/--- 5 G b~57 s (3.4a) 
o o  

~2 
G(v)=-2~zl/2]vl-2/3H(lv]-4/3) with g ( z ) - - - ~ s L n A i ( z  ) (3.4b) 

a = (7r0.) 1/2(4D) -1/4, b - (4D)1/4 
0_1/2 (3.4c) 

It thus results that [P(x, z = 0, t ) ]  is of the form 

t"a(bx)~5~ [P(x,z=O, t)] = 7 ~ Q  (3.5a) 

with 

a= (~a) ~/2(4D)-~/4, b = - -  (4D)1/4 f + 
o.1/2 , du Q(u)= 1 (3.5b) 

and Q ( - u ) = Q ( u ) .  Note that integrating (3.5) over x gives (a/b)t -1/2, 
which is the correct normalization since a/b=(47cD) -1/2. The relation 
between Q(u) and G(v) is as follows: The Laplace transform 
[P(x, z = 0, s)] can be expressed as 

[P(x, O, s)] =a(blx]) 1/3 F(s(btxl)4/3) (3.6a) 

with 

F (u )=  & e  uzT 5/'4Q(,~. 3/4) (3.6b) 

{one checks that ~ dx [P(x, O, s)] = (a/b)Tcl/2s-1/22 SJ ~ du Q(u) = 
(4Ds) 1/2, as expected}. Fourier transforming, one obtains 

i+oo  G(v)= d~ [3[ 1/3 F([~[4/3)e iv~ (3.7) 
O'3 

From (3.6b), (3.7) one finds that G(0) = 7~ 1/2 is equivalent to the normaliza- 
tion condition (3.5b). One then checks that it is consistent with (3.4b), 
since Limz~ + ~  zl/2H(z)=-1/2 [using the standard asymptotic expan- 
sions of the Airy function; see ref. 27, Eqs. (10.4.59)-(51)]. 

To exhibit the characteristic lengths more clearly, one can define 
z =  aod, t = rDf, where ao is the cutoff in the z direction and rD = a~/D is 
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the natural unit of time. Then o- can be written as a = i)2~, where v is a local 
velocity and ~ is the correlation length of the random flow in the z direc- 
tion. Using the natural units for x as x = wD2, we find that formula (3.5) 
becomes in terms of the dimensionless quantities 2, 3, i 

P(2,~=0, i)=(2~) 1/2t-5/4(~)~/2Q[(~-~)l/22i 3/41 (3.8) 

We will not work with these dimensionless quantities in what follows. 
In the next subsection we invert (3.7) first and then (3.6b) to obtain 

an integral representation of Q(u).  In the Section 3.3 we do things in the 
opposite order by first Laplace inverting (3.3) and then Fourier trans- 
forming, obtaining a small-u series expansion for Q(u).  

3.2. Integral  Representat ion of  the Scaling Function O 

The function G(v)  is obtained from Q(u)  through two successive trans- 
formations, the first one, (3.6b), involving a Laplace transform and the 
second one, (3.7), a Fourier transform. The latter is easily inverted, and 
one obtains 

f0 co F(u)  - dr e u~r 5/4Q(-c 3/4) 

2 //1/4 t ~- co 
1/2 Jo 

du c o s ( v u  3/4) l)- 2/3H( v -4/3) (3.9) 

In order to perform the inverse Laplace transform of F(u), a possible 
method is to transform the function u 1/4 cos(vu 3/4) into u 1/4 exp(-cvu  3/4) by 
rotating the domain of integration over v in the complex plane, and then 
to inverse Laplace transform in u. One has 

2 ul/4Re{f~codl)elVU3/41)_2/3n(v_4/3) } (3.10) 
F(u)  = - 7rl/---- 7 

_ 2 //.1/4 r + co 
7t 1/2 Jo 

dv v-2/3e -vu3/4 Re{ei~/6H(e  2irc/3u 4/3)} (3.11) 

(3.11) being deduced from (3.10) by the rotation v--* iv of the integration 
half-axis of the complex integral in (3.10) and taking the real part at the 
end of the calculation. Using the definition (3.4b) of H and the properties 
of the Airy function, one also has 

822/'69/5-6-2 
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Re{e'~/6H(e 2iz/3z)} = Re - i  ~z  2 L n ( A i ( z )  + i B i ( z ) )  

3 { 1 }  (3.12) z - -  
3z  ~ M 2 ( -  z )  

Thus one has 

2 1,4foe~176 2/33{ 1 } (3.13) F(U) z ~ 1/l / dv ~. uu3/4~) ~Z ~ z= v -4/3 

Note that the function being integrated is exactly the (rescaled) density of 
states given by (3.1). We have also checked numerically that (3.9) and 
(3.13) are identical. 

One can then introduce the inverse Laplace transform g~(:) of 
u 1/4 exp( -vu  3/4) obtained by contour integration along the imaginary axis 
or any path z = re i~~ such that Re(z)~<0 [if in addition Re(z 314) > 0  the 
convergence is better]. We have 

1/4e vu3/4 fo-- :73 = dr e "~g~t'z') (3.14a) b/ 

1 fo +~ = - dr r :/4 Im{exp [:re e~ - Dr3/4e3io/4 -~ 5i~0/4] } (3.14b) gv( z )  

As we checked, the last expression is independent of the choice of 
2?:/3 ~< (p ~< re/2 and converges reasonably well for numerical purposes. The 
comparison of (3.9)-(3.13) and (3.14a), (3.14b) gives 

5,4 3'4 2 fo+~ 3 { 1 }  (3.15) z / Q(r -  / )=~575 dvg~(z)v 2/3~z ~ z= v 4,3 

which can be rewritten 

r 5/4Q(.c 3/4) -- 3 f0~z~ dz ~z { 1 } = 231/~ 7r(Ai(z) 2 + Bi(z) 2) gl(rz) 

and finally, since g1(0) = 0, we obtain the following integral representation 
f o r  the scaling function Q: 

3 oo 1 
"c 4/5Q(z 3/4) = ~ fO dz 7: (A i ( z / : )  2 + B i ( z / : ) 2  ) g i ( z )  

with 

1 fo+~~ = - dr/,5/'4 i m { e x p [ z r e i ~  _ F3/4egi~o/4 ~_ 9i~p/4] } (3.16) g' l (z)  7: 
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Asymptotic Shape of the Scaling Function O for Large 
Arguments. From the fact that the Laplace transform of g'~(z) is 
uS/4exp(-u3/4) one easily derives through saddle point methods the 
following asymptotic behavior for g'~ (z) for small z: 

and for large z, 

2187-21/2 ( 3~4 z 3) 
g'l(z) ~ o  163842rl/2 z-iS/2 exp -- (3.17) 

5 
g t l ( Z )  - -  7 9/4 

16F(3/4) 

The behavior of Q(y) for large y can be obtained from the saddle 
point at small z, large r (large z/r) in the integral (3.16) using 

M 2 ( - z )  ~oo ~zl/2 exp(-4z3/2/3) 

The result is 
Q(Y) yUo~ 3(2~z) -1/2 ]yt exp[ - (3y)4/3/4] (3.18) 

The result shows that the large-deviation exponent is 6 = 4/3. We will 
discuss further the origin of this behavior in Sections 5 and 6. 

3.3. Series Representation of the Scaling Function Q(y) 

In this subsection we will first inverse Laplace transform Eq. (28): 

f 
+oo __220- (~2 

dx e-i;xEP(x , O, s)] 2D 0s 2 Ln Ai(s(4D) 1/3 (0"22) -2/3) (3.19) 

To do that, we first notice that the function di'(z)/Ai(z) is analytic with all 
poles on the negative axis corresponding to the zeros of the Airy function. 
Those zeros are all simple and occur at z = - an ,  n = 1, 2 ..... 0% ao = 2.338..., 
where a, is an increasing sequence. Since the inverse Laplace transform of 
f(s) is 

1 (7+i~ 
~ ~ - i~  f(s)e'S ds 

where ? has a real part larger than any singularity of f(s), we can choose 
? < 0 and close the contour at infinity in the half-plane Re(s)<  0 where the 
integral converges. Then one is left simply with 

+ocz 0"~2 
L exp[--a, , (4D) 1/3(a22)2/3t] f dx exp( - i2x) [P(x, O, t)]  = t 

oo 
n = l  

(3.20) 
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a result which could as well have been obtained by Laplace inverting from 
the start: 

+~ cr22 ~ 0 { 1 } (3.21) 
f ~ dxe i ;x [P(x 'O ' s ) ]=- -~n~l~  s =  s+(4D)-V3(f22)2/3an 

A lot of information is available on the zeros of the Airy function an. They 
can be written [ref. 27, p. 450, Eq. (10.4.94)] a n =h[37~(4n- 1)/8], where 
the asymptotic expansion of h(x) is well known, 

h(x)~x2/3( l  + ~, ckx -2k) 
k = l  

and the ck are tabulated. Since a~ ~ (3~n/2) 2/3 for large n it is clear that the 
above expressions (3.20) and (3.21) are convergent for any t >  0, s. In the 
limit 2 goes to 0 the summation in (3.20) can be replaced by an integral 
which can be evaluated explicitly, which shows that expression (3.20) 
converges to the free diffusion result (4~zDt) 1/2 as it should for 2 ~ 0. 

Thus we have obtained the interesting result that the averaged diffu- 
sion front of the MdM model, at a given wavevector 2, has a discrete 
relaxation spectrum with inverse relaxation rates r , ~  ])~]4/3a n. Note that 
these are exactly the eigenenergies of a 1D quantum mechanical model 
(without disorder) where the potential is V= +oo for x < 0 and V(x)= 22x 
for x > 0 (see Section 4). 

We can now Fourier transform (3.20) and find after a change of 
variable in each term of the series u = q(4D)l/4a3,/4t3/461/2: 

I N ( x ,  O ,  t ) ]  = ~-~ ~ a n 9 / 4 t - 9 / 4 u 2  

n = l  -oo 

x exp{ -- lul 4/3 + iu[(4D)l/4x(a, t) 3/46 -1/2] } 

Thus [P(x, O, t)] can be written under the scaling form (3.5): 

[P(x, 0, t)] = t - ~ Q  t- ~ (3.22) 

and we find the following expression for the scaling function Q(y): 

Q(y) 
n = l a 1~ 

~a,, ) (3.23) 

where the function R(z) is defined by 

R(z) = du u 2 exp(iuz - ]ul 4/3) (3.24) 
- -  oo 
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Remarkably, R(z)  is related to the Levy stable probability distribution 
Q4/3(z) through 

d 2 
R(z)  = -27c ~z 2 Q4/3(z) (3.25) 

Let us recall ~28) that the Levy distributions Q~(z) (0 < ct~<2) are stable 
under convolution and are the limit distribution of sums of centered inde- 
pendent variables z = n 1/~(x I + . . .  + xn), n ~ oo, where the distribution of 
xi falls like 1/]xi] 1+~ for large x i (they do not possess a second moment and 
thus do not obey the usual central limit theorem). Note, however, that, 
once summed over the a,  the properties of the Levy distribution (long tails, 
etc.) disappear and the resulting Q(u) seems to be quite a regular function. 
Although this connection with Q4/3 is intriguing, since Levy diffusion fronts 
are known to appear in other models of diffusion in random media where 
long-tailed distributions of trapping time appear under renormalization, its 
physical interpretation here, if any, is not straightforward. 

Formula (3.23) can be used to obtain a series representation for Q(y).  
From ref. 28 we know that 

Q~(z)= (rc:~) 1 ~ ( _ l ) k z 2 , F [ ( Z k  + l)/:~]/(2k)! 
k = 0  

where the series is convergent for all z when 1 < c~ ~< 2. From there we 
obtain the following series for Q(y): 

Q(y)=2(rc)l /2k= ~ an(3k/2+9/4) y2l~ (3.26) 
n 1 

0, t 
0.3- 

Q(x) 
0.2- 

0.1- 

/ fs - %%% 

I %% // ", 
/ %%% 

%%% 

/ %%%% 

I I I = 
1 2 3 4 

x 

Fig. 2. Plot of the scaling function Q(x) (solid line), obtained from the series expansion 
(3.26). The dashed curve is the stretched exponential (3.18), which becomes indistinguishable 
from Q(x) for x > 4 .  The value Q(0)=0.306.  
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This series is rapidly convergent everywhere and thus allows for a good 
determination of Q(y). The small-y behavior is 

Q(y) = 0.306007.. - 0.0425352.. y2 + 0.001923546.. );4 + . . .  

The function Q(y) obtained by this method is plotted in Fig. 2, where one 
can see that it crosses over around y ~ 4  to the asymptotic expression 
(3.18). We have also checked the overall normalization. 

3.4. Universal i ty of the Result for the Diffusion Front 

Thus far we have studied a continuum model with Gaussian 
uncorrelated disorder and we must ask whether it has anything to do with 
an actual simulation or experiment where (i) space and time could be 
discretized, (ii) the local velocity flow could have a non-Gaussian distribu- 
tion, and (iii) there could be short-range correlations between velocities at 
different altitudes. It turns out that all these features are irrelevant for the 
bulk of the distribution [P(x, 0, t)]. More precisely, the statement is that, 
if u = x/ l  3/4 is the rescaled variable, 

Lira tl/2[Prob(y < u < y + dy) ] = aQ(by) dy 
t ~ o O  

Furthermore, since a and b can obviously be extracted from the 
normalization and from the second cumulant [ (x2(t))], which can also be 
independently calculated for any model, a and b in fact do not depend on 
any microscopic details and are given by 

a = ( ~ ) 1 / 2  ( 4 D ) 1 / 4  b = ( 4 D ) 1 / 4 0  " 1/2 

where D is the asymptotic diffusion coefficient in the transverse direction 
and a is defined by 

=f dz Iv(0) v(z)3 

and is thus equal to the zero-momentum Fourier component of the velocity 
autocorrelation, provided the integral exists (we have assumed [ V(z)] = 0) 
and is thus independent of eventual higher-order cumulants of V. It is easy 
to check through the diagrammatic approach (see Appendix) that the 
fourth connected cumulant is irrelevant, for instance, provided 

f dzl dz2 dz3 IV(0) V(zl) V(z2) V(z3)] . . . .  
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is finite, etc. The fact that the result depends only on these two simple 
infrared-only dependent parameters has to do with the so-called super- 
renormalizability of the corresponding field theory in d =  1. Note that this 
property should extend up to, and including, d~ = 2 transverse ("vertical") 
dimensions. As we will see, anomalous behavior can arise in the tails, but 
since Q(y) is normalized to unity, the bulk contains almost all the tracer 
diffusing. 

It is interesting to relate this universality of the diffusion front to the 
work of Derrida and Gardner, ~16) who computed the DOS and localization 
length for a discrete 1D random potential 2V,, through a weak-disorder 
expansion. They found universality for weak disorder in the vicinity of the 
band edge E ~ 0 ,  2 -~0  with E2 -4/3 fixed, which from the mapping of 
Section 2 corresponds exactly to the universality of diffusion at large time. 
This can also be seen from the n = 0 quantum mechanics I15) using rescaling. 

3.5. Expression for the Moments of the Displacement 
[ (x2k ( t ) )o ]  

From (3.3) one can extract an analytic expression for the moments of 
the displacement [(x2~(t))o] for the Gaussian continuum model, where 
here ( . . . ) o  denotes a normalized thermal average restricted to the walks 
which come back to the origin at t. In the Appendix a direct calculation of 
these moments is carried up to 2k=  4, and is found to agree with our 
general expression. As also discussed in the Appendix, for general discrete 
models the result below for the moments give the leading behavior at long 
time, where the coefficients D and o- defined. 

Expanding (3.3) around 2 = 0 on both sides and using the asymptotic 
expansion of Ai(z) for large z, as given in ref. 27 [p. 448, (10.4.59)], one 
easily obtains the Laplace transforms: 

f+oo 1 
x2k[P(x, O, s)] = (2k)! a ( -  1)k/32 k b2ks3k/2 

- -  ~ bs 1/2 

with/3o = Tel/2,  /~2 = --gl/2/2, and for k ~> 1, 

]32k+ 2 = -2~1/2 ~f  ( ~ +  1) (X k 

where the ek are defined as the coefficients of the following series expansion: 

Ln 1+ (--)~c~ ~ x k - e~x ~ 
k = l  k = l  
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where the c~ enter the asymptotic expansion of the Airy function and are 
given by (27/ 

F(3k + 1/2) 
ck = 54kk ! F(k + 1/2) 

Co = 1, cl = 15/216, ect. Thus, inverse Laplace transforming and taking into 
account the normalization, we find for the moments 

[ (x2k(t) )o]  = (2k)! ( - 1 )kfi2kak(4D ) -k/2 
F((3k  + 1)/2) 

In particular we obtain 

[ ( x 2 ) 0 ]  = azcl/Z(4D) 1/2t3/2 

[ ( x4 )o] = 4! (50-/16) 2 (472) 1/2 (DF(7/2)) - '  t 3 

t3k/2 

4. DECAY OF THE M A G N E T I Z A T I O N  OF D IFFUSING SPINS 

Following the analysis of Section 2, the averaged local transverse 
magnetization [M(z, t)]  at site z of spins initially at z = 0 diffusing in a 
Gaussian continuum random magnetic field is equal to the partition 
function [Gi~(z, t)]  and of the 1D Edwards self-avoiding polymer (2.8) 
with ends fixed at 0 and z: 

oz,, xp[ 
1 0-22 f~ - z ( r ) ) } ]  + ~ du ~(z(u) 

- [G,~(z, t)3 

This relation is valid in any dimension [z(r)  becoming a d-dimensional 
vector ]. 

In d =  1 this quantity is known exactly at z = 0 from (3.20), which was 
obtained through Laplace inversion of (3.19). Thus, the average magnetiza- 
tion of walkers returning to the same site z = 0 is 

0-2 2 
[ M ( z = 0 ,  t ) ] = ~ t  ~ e x p { - a , ( 4 D )  1/3(0-}c2)2/3t} (4.1) 

n - - I  

where the an are the absolute values of the zeros of the Airy function in 
increasing order. For short times this crosses over to the pure diffusion 
decay (47rt) 1/2 as discussed in Section 3.3. 
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One has for long time 
0-Z e 

[ M ( z = 0 ,  t)]  ~ - ~ t e x p { - 2 . 3 4 . . ( 4 D )  1/3(a22)2/3t} (4.2) 

which corresponds to a transition at s=sc(2)=2.34..(4D) 1/3(0"22)2/3 in 
the grand canonical partition function of the polymer with endpoints 
constrained at z = 0, as was discussed by Thouless. (15) 

The most interesting quantity, for experiments on one-dimensional 
systems is the averaged total magnetization [M( t ) ]  = j" dz [M(z, t)]. This 
is because one can hope to measure the disorder-averaged magnetization 
only by averaging over many independent microscopic spins. In the 
thermodynamic limit the total magnetization becomes equal to the 
configurational average [M(t) ] .  To observe (4.1)-(4.2) one would have to 
select only the spins which came back to z = 0, which seems practically 
more difficult (except maybe by considering a large number of parallel 
chains and spins initially localized on a plane transverse to the chains). 

The total magnetization corresponds to the unconstrained partition 
function of the 1D polymer (e.g., to the susceptibility of the n = 0  ~4 
model). As was shown by Thouless, (15) the Laplace transform of this 
quantity diverges like ( s - s ~ )  -1 at a different critical "chemical potential" 
s = s'c(2 ) = 1.74.. (4D) 1/3 (0-22)2/3. Thus we obtain at large time 

EM(t ) ]  ~ const,  exp{ - 1,74.. (4D)-  1/3 (0-22)2/3t } (4.3) 

which has a slower decay rate than (4.2) (since the moments see the same 
field less often, e.g., the walks are more stretched). 

4.1. H i g h e r  D i m e n s i o n  

In a related work (18) with Mitra we use the general relation between 
the spin depolarization problem and the self-avoiding walk problem 
(polymer) to obtain new results for the magnetization decay [M( t ) ]  in 
higher dimensions for the continuum Gaussian random magnetic field. In 
particular we obtain at large time 

[M( t ) ]  ~ t ~- l e s,, 

where 7 is the SAW susceptibility exponent and sc the polymer free energy. 
For  small 2 we find that in d~<2, S,.~.~ 4/(4 d), s c ~ 2 2 L n 2  in d = 2  and 
Sc~ 22 in d >  2. Furthermore, the quantity [M(z, t)]  takes quite generally 
the scaling form for large t, z ~ t": 

EM(z, t)]  = t-~dF(zt-~)EM(t)] 



942 Le Doussal 

where v is the SAW correlation length exponent. Also, [ M ( z = 0 ,  t)] 
t~-2e set (lattice cutoffs then have to be introduced). Note that d =  1 is 
very particular. 

4.2. Un iversa l i ty  of  the  Results 

The question of the universality of the continuum Gaussian model for 
the spin depolarization problem is analyzed in a very general framework in 
ref. 18. Here we make some remarks pertinent for the results (4.1)-(4.3) in 
d = l .  

The property which is valid for a large class of discrete models (see 
below) is that the decay is exponential, and that the decay rate defined by 

sc()~) = - Lim 1 Log M(t) 
t ~ + ~  t 

[where M(t) is either the quantity in (4.2) or (4.3)] is given for small 2 
exactly by the exponents in the expressions in (4.2) (4.3), where, as in the 
MdM model, D and a2 2 are independent of microscopic details. Of course 
there will be a higher-order correction ~a2  2 to sc(2 ) proportional to the 
lattice cutoff. Thus the exponential decays in (4.2)-(4.3) are exact for any 
discrete model in this universality class, where D is the actual diffusion 
coefficient measured at large t and O'~ 2 is the integrated correlation function 
of the second cumulant of the disorder, e.g., 0"2 2 ~ ~ dz [co(0) co(z)]. Thus, 
our result (4.3) should also apply to the discrete Gaussian model 
considered in ref. 19 through qualitative arguments. In addition to this 
strong universality, there is also a weaker property, namely that (4.1) gives 
the exact scaling function in the limit t-~ 0% )~--, 0, with t.~ 4/3 fixed. 

How big is this universality class? Let us consider a more general 
model in d-= 1 with a cutoff and a more general on-site distribution of 
magnetic field P(co). In the n = 0 quantum mechanics of Thouless this 
is equivalent to considering a more general potential V(cb 2) defined 
through ~ dco exp(icon) = e x p ( -  V(n)). For Gaussian randomness V(~ 2) = 
~r(,~2/2))(~2) 2. Following the steps in ref. 15, it is easy to see that the 
calculation of [M(z=O,s)] amounts to solving the following radial 
Schr6dinger equation: 

D •p2 + qSo(p) = ( - s )  ~o(P) (4.4) 

where ~o(P) must decay to 0 at p ~ oe and qSo(p=0)=0.  If E is the first 
eigenenergy of the Hamiltonian on the 1.h.s., s~.= - E  is the first pole of 
[M(z, s)], which then decays like exp ( - sc t  ). Clearly, if V(n) is monotonic 
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and grows at infinity faster than n, a simple rescaling p ~ ). 2/3, s ~ 2 4/3 
shows that only the behavior of V(p) ~ p close to p = 0 is relevant for small 
disorder, and that the model belongs to the universality class of the 
Gaussian continuum model. However, if V(p)/p goes to 0 at infinity, there 
will be only a continuum of eigenvalues accumulating at s = 0. The conse- 
quence is that in that case the magnetization will decay as a stretched 
exponential. This is discussed further in ref. 18. 

One can also make a simple Flory argument which parallels the n = 0 
quantum mechanics. The total weight associated with walks visiting s sites 
is 

exp ( - Ds 2/t + s V(t/s)) (4.5) 

(s must not be confused with the Laplace variable!). Clearly p = t/s and the 
exponent in (4.5) is exactly analogous to t multiplied by the operator on 
the 1.h.s. if (4.4). The idea is that in d =  1, these Flory arguments are almost 
exact and that the n = 0 quantum mechanics gives the prefactors. Balancing 
terms in (4.5), one sees that s ~)~2/3t, and thus once again one checks that 
higher-order terms in V(p) are irrelevant under the conditions discussed 
above. Note that the extension R = s of an Edwards polymer with small 
self-repulsion is R ~ ~ , 2 / 3 t .  

5. S C A L I N G  F U N C T I O N  FOR D I F F U S I O N  IN M E D I A  
W I T H  S O U R C E S  A N D  S I N K S  IN D = I  

As explained in Section 2.1, the averaged concentration at the origin in 
the model of diffusion in the presence of sinks and sources characterized by 
a strength 2V, IGor(z= 0, t)], is directly related to the density of states 
p~.(E) of the Hamiltonian H A = - D V  2 + 2V(z) through 

Gx(z = 0, t ) =  d E p ~ . ( E ) e x p ( - E t )  (5.1) 
- - o 3  

Here we compute it exactly for the Gaussian continuum model in d =  1 for 
the known expression of the density of states. We emphasize the relations 
with corresponding quantities in the MdM model. 

From the expression (3.1) of the density of states, one obtains 

G~(z = O, t) = A)b2/3 g(Bt)~4/3) (5.2) 

with A = (2/~2)al/3(4D) z/3, B = (4D)-1/3a2/3, and g(u) defined by (u 7> 0) 

g(u) = oo dz e x p ( - z u )  ~zz = ~ e x p ( - z . )  M2(z ) (5.3) 

where M(z)  is the modulus of the Airy function. 
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In order to study g(u)  in various asymptotic regimes, we rewrite it as 
g ( u ) = g o ( u ) + g + ( u ) + g  (u), with 

go(u) = u dz exp( -zu )  rcz 1/2 = ITc3/2u 1/2 

g (u) = f o  ~ dz exp( -zu )  {M-a(z) - ~z 1/2 } (5.4) 

fO ~176 
g + ( u )  = u dz exp(zu) M-2(--z) 

where go(u) corresponds to the free spectrum [obtained in (5.2) for 2 ~ 0 
at fixed t] and thus to the decay due only to pure diffusion, g _ ( u )  and 
g + ( u )  correspond to modifications of this behavior decreasing in time 
(negative frequences) and increasing (positive frequencies), respectively. In 
g _ ( u )  the integrand goes to zero for z--* +oo, since M-2(z)~ 7cz 1/2 in this 
limit. In g+(u) ,  hgowever, the integrand has a maximum which gives the 
main contribution to g(u)  for u ~ +oo. 

5.1. S m a l l - T i m e  Behav ior  

From Section2.1, G;.(z=0, t) is the generating function of the 
moments ( x n ( t ) )  of the horizontal displacement in the MdM model, 
studied in Section 3.5 and in the Appendix. Thus the small-u behavior of 
g(u)  is related to these moments. One has 

f -I- oo 
g+(u)+g_(u)=u dz(M-2(z)- lr ,  zl/20(z))--kO(u 2) 

- -  c z )  

(5.5) 

The integrand is a total derivative and using M-Z=-rcc?O/3z with 
O( -I- oo ) = 1r/2, O(z -* - oo ) = rc/4 - 2z3/2/3 + O ( z -  3/2) from ref. 27, p. 449, 
(10.4), one easily find 

g(u)  = 71"3/2 b/- 1/2/2 -]- ~2u/4 + O(u 2) (5.6) 

Once inserted back in (5.2) the first term gives the normalization, and the 
second gives back exactly the result of Section 3.5 for the second moment. 

5.2. L o n g - T i m e  Behav ior  

Using the asymptotic behavior for z ~  +0% M - 2 ( - z )  
z z  1/2 exp(-4z3/2/3) (e.g., the Lifschitz tail of the localization problem), we 
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can obtain the asymptotic behavior of g2(u) for large u through a saddle 
point method and we obtain (the maximum is for z3/2= u3/8): 

g(u) ~ g2(u) ~ �89 7z3/2 uh/2 exp(u3/12) (5.7) 

Restoring the factors from (5.2), we finally find the large-t behavior: 

•4t5/2 (t3~4) 
[G~.(z = 0, t)] 8 ( - ~ 1 / 2  exp \ 4 - ~ J  (5.8) 

Note that this result, which we believe is correct, differs by a factor of 6 
from the result of Ref. 20 where these well-known results for the density of 
states in d =  1 are unknowingly rederived. 

5.3. Relation with the M d M  Asymptotic Diffusion Front 

Because of the relation 

f+oo f+~ [G~.(z = 0, t)] = dE px(E) e x p ( - E t )  = dx e;'x[P(x, z = 0, t)] 
- - o o  - - o o  

(5.9) 

the asymptotic behavior (5.8) is related to the asymptotic shape of the 
front: 

31xl e x p (  34/3Dl/3x4/3) 
[P(x, z = 0 ,  t)] zco.21/2t2 ~ // (5.10) 

and we have checked through a simple saddle point method that 
(5.8)-(5.10) are indeed compatible. Thus the stretched region x >> t 3/4 of the 
front in the MdM model is related to the Lifschitz tails of the random 
potential. 

5.4. Universality of the Result (5.2) 

The universality of (5.2) is very limited. Compared to the other models 
in Sections 3 and 4, diffusion in the presence of random sources and sinks 
offers the least universality. For a model with cutoffs, (5.2) is true only at 
intermediate times, only in the limit 2 ~ 0, t --* oo with t2413 fixed. Since Gx 
is the generating function of the moments (xn( t ) )  and we know from 
Section 3 that these moments attain their value from the Gaussian model 
only for large time, it is clear that (5.2) is not correct at small time either 
for a discrete model (although the true behavior might then be easy to 
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obtain perturbatively). On the other hand, at truly large time t~>)~ 4/3 
formula (5.2) and more precisely (5.8) crosses over to 

[Gx(0, t)] ~ exp(C22~t 2) (5.11) 

coming from the single-site distribution. Using the analogy with the self- 
attracting walk discussed in Section 2.2, substituting 22--*-22 in the 
corresponding formula (2.7), one sees that the partition function is 
dominated by the configuration where the walk is collapsed at site 0, thus 
with Zkn(k ,  t ) = t  2, leading to (5.11). This behavior was obtained by 
Zeldovich et al.(29) and the crossover between (5.8) and (5.11) was analyzed 
qualitatively very recently in ref. 21. Here we point out that the crossover 
from (5.8) to (5.11) corresponds in localization to the crossover from the 
Lifschitz tail p ( E ) ~ e x p ( - c o n s t  . E  2-d/2) of the DOS for the continuum 
Gaussian model to the Lifschitz tail p ( E ) ~ e x p ( - c o n s t . E  2) when the 
correlation length of the random potential exceeds the de Broglie thermal 
wavelength. For localization, this crossover was analyzed in ref. 30. 

Finally, the behavior (5.11) corresponds to some tails of the diffusion 
front of the MdM model. It corresponds to ultrarare events of a particle 
staying in the same layer and to configurations where this layer has a very 
large velocity, and thus to a tail e x p ( - x Z / t  2) of the diffusion front. Note 
that (5.11) is very dependent on the shape of the distribution and thus 
highly nonuniversal. 

6. TAILS,  F L O R Y - L I F S C H I T Z  A R G U M E N T S ,  A N D  
F U R T H E R  C O N N E C T I O N S  

In this section we analyze further the various tails in the diffusion front 
of the MdM model and their connections to the other models. There are 
two ty.pes: one can take the Laplace transform of the front [e.g., multiply 
by e xp ( -2x )  and integrate]: this emphasizes the horizontally stretched 
configurations x ~> t 3/4 and is connected to the Lifschitz tails of the localiza- 
tion model. Or, one can take the Fourier transform of the front, in which 
large horizontal displacements cancel and thus which emphasizes the 
tracers with small horizontal displacement. This is connected to spin 
depolarization and polymers. 

6.1. D i f fus ion  Front  and L i fsch i t zTa i l s  

We have obtained in Section 3 that the diffusion front [P(x, z = 0, t)] 
has a stretched exponential behavior exp ( - cons t .  (x/t3/4) 4/3) for X >~ t 3/4. 
We now give a qualitative argument for this behavior {which applies to 
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dz [P(x, z, t)] as well}. This argument is of the Flory-Lifschitz type 
combining a saddle point analysis fi la Lifschitz with dimensional argument 
fi la Flory. We believe that it gives a reasonable indication of the behavior 
in arbitrary dimensions, although it neglects fluctuations. 

Let us consider a discrete MdM model with d "vertical" dimensions. 
As discussed in Section 1, the horizontal displacement in a given flow 
configuration for walks which visit s distinct sites scales as 

x ~  t ~ V(i) (6.1) 
S .  z = l  

and, being the sum of random variables, takes a Gaussian shape of 
variance t2/s at large time. Note that the typical s is Sty p ~ inf(t m2, t) and 
t h u s  Xty p ~ t 1 d/4 for d <  2, Xty p ~ t(Ln 0 1/2 in d =  2 and Xty p ~ t I/2 in d >  2. 

On the other hand, the fraction of contracted walks which have 
s~stYp~inf( t ,  t d/2) scales like exp(--Dt/s21d). Thus, one expects that the 
diffusion front (both thermally and configurationally averaged) is like 

[P(x, t) ] ~ f ds exp( - Dt/s 2/a + sx2/~t 2) (6.2) 

The saddle point is at s * =  (~rDt3/x2) d/(a+2) and one finds 

[p(x, t)]~exp {_const. Dd/d+ 2~7_2/(d+ 2) ( x ~4/(d+ 2))> -s) (6.3) 

Note, however, that this is true only if s* ~ S t y  p ~ min(t, td/2): thus in d <  2 
it is true only in the stretched region for X>GI/2D-d/4tl all4. Note the 
perfect agreement with (5.10) in d =  1. For smaller values of x/t (1-m4) the 
front is simply Gaussian, obtained by inserting s=Styp ~ (Dr) d/2 in (6.2) 
(stretched vertical walks s >> Sty p do not contribute appreciably here--see 
below, however). Now, for d >  2 we find that the form (6.3) for the front 
is still valid in the ultrastretched regime 

x >> (aD)1/2 (a d 2D)-(d+ 2)/(2d)t(1- l/d) 

which corresponds to the regime of validity that we expect for (6.2), 
e.g., s ~ t a d - 2 D  (a cutoff a has to be introduced). This horizontally 
ultrastretched regime corresponds to ultracompressed vertical walks. For 
typical walks one obtains a Gaussian diffusion front for d >  2: 

- const �9 
Da d- 2X2N} 

exp -~ / 
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Note that in d >  2, since we have still supposed r/h = 0, the diffusion is nor- 
mal only by virtue of the lattice cutoff a. In particular, D x ~  a 2-~ diverges 
when a ~ 0, as the simple one-loop integral would show (see Appendix). 

A simpler but related argument is the following. Let us consider a 
binary distribution for V (it can be generalized). The probability of finding 
a region of size R d in the vertical space such that V= +1 is exp(--Rd), and 
the probability that a walk remains there for time t is exp( - t /R2) .  Thus, 
[P(x ~ t, t)]  ~ e x p ( -  t d/(d+ 2)) (survival trapping probability). If the front is 
[P(x, t)]  ~ e x p ( -  (x/t(1-d/4))~), this implies 6 = 4 / (d+  2) for d <  2. This is 
correct. However, one could erroneously conclude from this argument in 
d >  2 that 6 = 2d/(d+ 2) if one was supposing a diffusion front of the type 
exp(-(x/tl/2) ~) as would seem natural. This is wrong, as shown above, 
because there are additional length scales and the region x ~  t becomes 
atypical above d = 2. 

One can make contact also with the conventional Lifschitz tail of 
the density of states of the Gaussian random potential p(E)~ 
exp(_(~r22)- lE2 a/2) and check that one recovers exactly the diffusion 
front (6.3) using the correspondence (5.9) between the two models for 
d <  2. This simple relation, however, breaks down in d >  2. 

6.2. A Fur ther  Rela t ion b e t w e e n  the  M d M  M o d e l  
and the  S A W :  Per iodic  Boundar ies  

Let us impose periodic boundary conditions in the x direction by rein- 
jecting a particle arriving at x - - L  at x = 0. Equivalently one can consider 
the MdM model on a cylinder, periodic in the x direction. Note that this 
does not affect the flow, each layer being closed on itself. Using Eq. (2.15) 
derived in Section 2, one can relate the averaged probability [PL(x, z, t)]  
for a fixed L to a sum of partition functions for a self-repelling chain of 
strength 2k = 2~k/L: 

[PL(x, z, t)]  =Lk=~oo  2cos - -  [Gi;,k(z, t)] 

In one transverse dimension, for instance, one obtains 

~ 4a(Tzk)2 t ( 2 ~ x )  
[Pr(x, z = 0 ,  t)]  = D L3 cos - -  

k =  ~ n ~ l  

_ an(4D)- 1/3 az/3(2~zk)a/3t 
x exp L4/3 (6.4) 

In the long-time limit it goes to a uniform front, but the longest transient 
corresponds to the term k = 1, n = 1 in this series. In particular, the long- 
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time limit for the integrated diffusion front can be obtained as (keeping only 
the modes k = 0, 1) 

f dz[PL(x,z,t)]:L+const'cos(~-~) 

which should easily be checked by numerical simulation. 
The physical origin of the correspondence is the following. Slow 

relaxation in the x direction (or compressed walks) corresponds to 
stretched, self-repulsive walks in the z direction. The strength of the self- 
repulsion in simply controlled by the radius L of the cylinder. 

In higher transverse dimension one would obtain, for instance, a decay 
of the slowest transient k = 1 proportional to t ~- 1 exp ( - sc t ) ;  one can even 
observe in principle the full diffusion front of the polymer: 

Note that the discussion of the universality of the tails of the MdM 
model corresponding to slow diffusion along x follows closely the one of 
Section 4 on the spin depolarization problem. Certainly (4.1)-(4.3) hold in 
the scaling regime t~L  4/3. There might be, however, nonuniversal tails: 
consider, for instance, a distribution of velocities V(z) with a delta function 
weight at V= 0. Clearly a Lifschitz argument shows that with a probability 
e x p ( - t  d/(~+2~) a tracer trapped inside a region of V = 0  will not diffuse at 
all along x. These tails will ultimately correct the result (4.3). 

7. C O N C L U S I O N  

In conclusion, we have described some connections between the 
Matheron-de Marsilly model, the depolarization of spins in a random 
field, diffusion in the presence of sources and sinks, and the well-studied 
models of the Edwards chain and the electron in a random potential. We 
have shown that these connections are useful. In particular, we have 
obtained analytically the diffusion front in the MdM model: there are very 
few examples of diffusion in random flows where the front is nontrivial and 
can be computed exactly. We have obtained exactly the leading decay of 
the total magnetization for one-dimensional diffusion in a random field, 
which can be measured in NMR experiments. 

Since this work was completed a number of papers on closely related 
subjects have come to my attention, most of them kindly indicated to me 
by the referees. First, as was mentioned in the Introduction, probabilists 
have studied in great detail the relation between the Edwards chain and 
random Schr6dinger operators. There is now a precise formulation by 

822/69/5-6-3 
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probahilists of the theories of Thouless (and of Balian-Toulouse) without 
the use of the n = 0 trick. The interested reader can find a detailed analysis 
along these lines of the Edwards partition function in the review by 
Westwater. (31~ In a recent study, March and Sznitman (32~ generalize the 
theorems to arbitrary potentials (i.e., more general than ~4) and study the 
partition function in the t domain. Second, Kesten and Spitzer (33~ obtained 
a proof of the universality of the diffusion front in MdM-like models. They 
did not, however, to the best of my understanding, obtain an exact expres- 
sion for the front. Finally, there are very rencent related works by Zumofen 
et al. (34) and Avelameda and Majda. (35) 

A P P E N D I X  

In this Appendix we write the general expression for the moments of 
the horizontal displacement in the D M M  model. It is x(t)= ~t o dr V(z(r)) 
for a given realization of the random potential V(z) and a given thermal 
history z(z) of the vertical coordinate. We denote by ( . . . ) ( i f )  the unnor- 
malized thermal average over vertical paths such that z( t )=z [we take 
always z ( 0 ) = 0 ] .  The usual thermal average ( . . - )  without condition on 
the endpoint is thus ( - . - )  = ~ dz (...)~un). One has 

(xn(t))~un)=n[ fod% fo"&n 1...fo2dZl 

X f dr 1 . . . d r  n {Po(ra, %) Po(r2--rl, r2-- zl) 

x . . .Po( r~- - r~_ l ,  % - - %  1) P o ( z - - r , ,  t - - z , )  V(rl)-.- V(rn)} 

where Po(z ' -z ,  t ' - t )  is the propagator of the diffusion along the vertical 
direction (we have supposed translational invariance in t and z). The 
corresponding expression for (xn(t))  is identical with the term Po(z-rn,  
t - % )  deleted. After a Laplace transformation, this can be rewritten 

(xn(s))~ TM =n! f dq . .  "drn V(q) . . .  V(rn) Po(rl, s) Po(r2-rl ,  s) 

x ... Po(rn - rn_ 1, s) Po(z - rn, s) 

Thus, for the generating function of these moments one obtains 

f dsc-stf dxc i2xp(x,z, t)~- ~ (-i,~)n(zIGolVGolV'"Gol[O) 
n=o 
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with n factors of V on the r.h.s. We have defined the pure diffusion operator 
{zl Go~]z ')  = Po(z ' -  z, s). For pure continuum diffusion, Go = s -  DV 2. 
The formal resummation of the above formula thus gives 

1 
f d, f  xp(x, z, ,I= <z[ So + io> 

and provides a demonstrat ion of the Feyman Kac formula (2.5) which is 
valid (formally) for any configuration V(z). 

The unaveraged above formula can be represented very simply by the 
diagram in Fig. 3a, where momentum is conserved at the vertex and 
all moments  are integrated on. There is a factor Gol(q,s) per solid 
propagator.  Let us now consider Gaussian disorder with V(q)= 
S dz eiqZ[ V(O) V(z)]. The averages [~xn(s))(o u~)] are represented by similar 
diagrams where disorder lines are paired up in all possible ways with a 
factor V(q) for each disorder line of momentum q. Represented in Fig. 3 
are the single diagram contributing to the mean square displacement n = 2 
and the three diagrams for n = 4. For  an arbitrary discrete model the only 
property of the propagator  Gol(q, s) which is needed is that for small 

x ~ ~ x 
O O 

(a) 

• ~- ' " / - ' "  x 
0 0 

(b) 

S % 
/ % 

/ / % '~ 

I I X I 

x .*..*. ~x x 
0 0 

x .*. • ~ ~ x 
0 0 

Fig. 3. (a) Graphs contributing to the mean square displacement. The dashed lines are 
disorder propagators. (b) Graphs contributing to the fourth moment of the displacement. 
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s it takes the form G0(q, s ) = s +  Dq2+ h.o.t., which defines the diffusion 
coefficient D. The normalization gives ~ (dq/2~)Gol(q, s),,~ (4Ds) 1/2. 

The diagram for n = 2 is 

[(x2(s) )(oun)] ~ 2  ! f dql dq2 V(ql Z q2)(  1 )2 V(O) 
(2rt) 2 -~-q22~s ~ ~4--Ds 2 

It is easy to check that only a = V(0)= 5 dz IV(0) V(z)] and D, when they 
exist, contribute to the dominant divergence when s--+ 0. These dominant 
infrared divergence do not depend on an ultraviolet cutoff (or microscopic 
details). This property remains true for all moments. In order to check the 
predictions of the exact solution in Section 3.5 we have also calculated the 
moment n = 4. Diagrams in 3b give 4! D 3/2S-7/2 multiplied by 3/64, 1/32, 
and 5/256, respectively, for a total 

[(X4(S))gun)]=4! "~ D-3/2 S 7/2 

We inverse-Laplace-transformed and divided by the normalization (prob- 
ability density at layer z = 0) to find the result displayed in Section 3.5. 

A similar calculation can be performed for the unrestricted thermal 
average (the external momentum is set equal to zero and not integrated 
upon). Thus 

E ( x 2 ( s ) ) ] = ~ f d q  V(q) 1 
2~ Dq 2 + s D1/2s5/2 

and thus 

4 _ _  t3/2 E(x2(t))l 3(~D)1/2 

Note, by comparing with the above result, that walks which come back to 
the same layer z = 0 have a horizontal diffusion enhanced by a factor of 
roughly 4 compared to the average walk. This is, of course, because they 
visit more often (roughly twice) the same layer (see Section 1). 

Reasonable deviations from a Gaussian are unimportant in the 
long-time limit. For instance, consider the diagram for the n = 4 moment 
corresponding to a fourth-order connected cumulant [VVVV],.. One 
obtains 

[VVVV]c(q=O) ; dqo ( ;  dq )3 s_ 3 
2n(Dq 2 + s) 2 27r(Dq 2 + s) 

which is thus subdominant compared to the above divergence s -7/2 coming 
from the contribution proportional to a, provided [VVVV],(q = 0) exists. 
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A C K N O W L E D G M E N T  

W e  a c k n o w l e d g e  s u p p o r t  f r o m  N S F  g r a n t  D M S - 9 1 0 0 3 8 3 .  
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